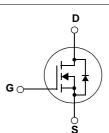
October 2007

HUF75344A3 N-Channel UltraFET Power MOSFET 55V, 75A, 8mΩ

Features

• $R_{DS(on)} = 6.5m\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 75A$


GDS

· RoHS compliant

Description

 This N-channel power MOSFET is produced using Fairchild Semiconductor's innovative UltraFET process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored change. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motro drives, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products.

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

TO-3PN

Symbol		Ratings	Units	
V _{DSS}	Drain to Source Voltage	Drain to Source Voltage		
V _{GSS}	Gate to Source Voltage		±20	V
I _D	Drain Current	-Continuous (T _C = 130 ^o C)	75	А
I _{DM}	Drain Current	- Pulsed	300	А
E _{AS}	Single Pulsed Avalanche E	e 1) 1153	mJ	
P _D Power Di	Devuer Dissignation	$(T_{\rm C} = 25^{\rm o}{\rm C})$	288.5	W
	Power Dissipation	1.92	W/ºC	
T _J , T _{STG}	Operating and Storage Ter	-55 to +175	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Ratings	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.52 °C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	40	C/W

Device Marking Device Pac		Packag	je Reel S	ize Ta	pe Width		Quantity		
HUF75344A3 HUF75344A3 TO-3Pt		N -		-		30			
Electrica	l Char	acteristics							
Symbol		Parameter		Test Con	ditions	Min.	Тур.	Max.	Units
Off Charac	teristic	S							
BV _{DSS}	Drain to	Source Breakdown V	oltage	$I_{D} = 250 \mu A, V_{GS} = 0$	$VV, T_{J} = 25^{\circ}C$	55	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdo Coeffici	own Voltage Temperati ent	ure	$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-	0.07	-	V/ºC
				$V_{DS} = 50V, V_{GS} = 0V$		-	-	1	
IDSS	Zero Gate Voltage Drain Current		fil	$V_{DS} = 45V, V_{GS} = 0$	V, T _J = 150 ^o C	-	-	250	μA
I _{GSS}	Gate to	b Body Leakage Current $V_{GS} = \pm 20V, V_{DS} = 0V$		-	-	±100	nA		
On Charac	teristic	S							
V _{GS(th)}	Gate Threshold Voltage		$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		2	-	4	V	
R _{DS(on)}	Static D	rain to Source On Res	istance	V _{GS} = 10V, I _D = 75A		-	6.5	8.0	mΩ
Dynamic C	haracte	eristics							
C _{iss}	Input Ca	apacitance				-	3650	4855	pF
C _{oss}	Output	Capacitance		[−] V _{DS} = 25V, V _{GS} = 0 −f = 1MHz)V	-	980	1305	pF
C _{rss}	Reverse	e Transfer Capacitance)			-	135	205	pF
Q _{g(tot)}	Total Ga	ate Charge at 20V		$V_{GS} = 0V$ to 20V		-	160	208	nC
Q _{g(10)}	Total Ga	ate Charge at 10V		$V_{GS} = 0V \text{ to } 10V$	$V_{DS} = 30V$	-	86	112	nC
Q _{g(th)}	Thresho	old Gate Charge		$V_{GS} = 0V$ to 2V	I _D = 75A		7	9	nC
Q _{gs}	Gate to	Source Gate Charge			I _g = 1mA	-	17	-	nC
Q _{gd}	Gate to	Drain "Miller" Charge				-	28	-	nC
Switching	Charac	teristics							
t _{ON}	Turn-Or					-	146	310	ns
									1

Reverse Transfer Capacita C_{rss} Q_{g(tot)} Total Gate Charge at 20V

t _{ON}	Turn-On Time		-	146
t _{d(on)}	Turn-On Delay Time		-	19
t _r	Turn-On Rise Time	V _{DD} = 30V, I _D = 75A V _{GS} =10V, R _{GEN} = 3Ω	-	126
t _{d(off)}	Turn-Off Delay Time	$v_{GS} = 10^{\circ}$, $R_{GEN} = 32^{\circ}$	-	61
t _f	Turn-Off Fall Time		-	20
tOFF	Turn-Off Time		-	80

Drain-Source Diode Characteristics

V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0V, I_{SD} = 75A$	-	-	1.25	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _{SD} = 75A	-	79	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$	-	270	-	nC

Notes: 1: L = 0.41mH, I_{AS} = 75A, V_{DD} = 50V, V_{GS} = 10V, R_G = 25 Ω , Starting T_J = 25°C

48

262

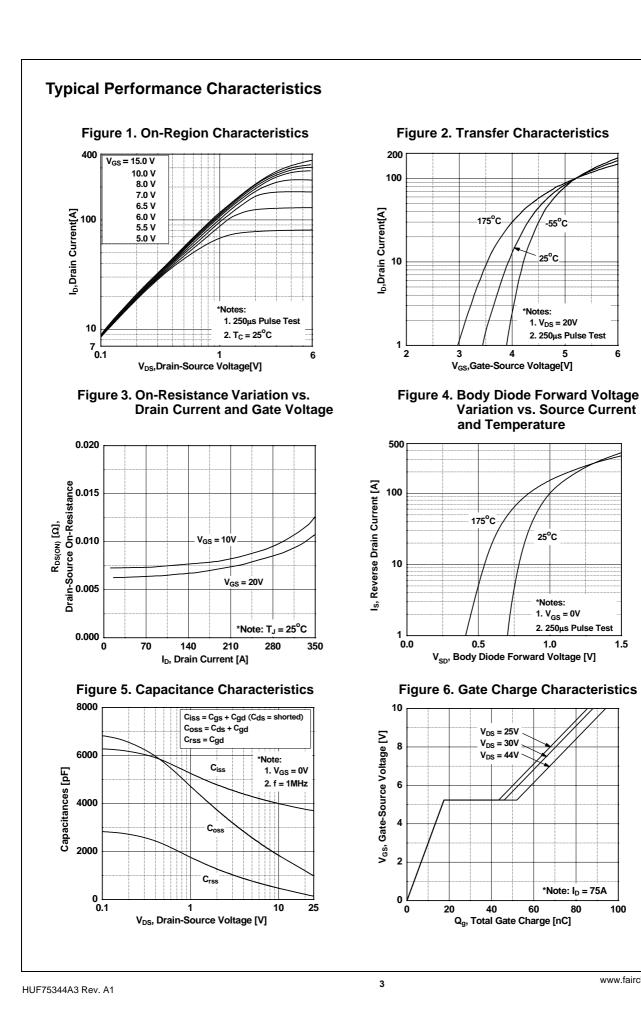
130

48

178

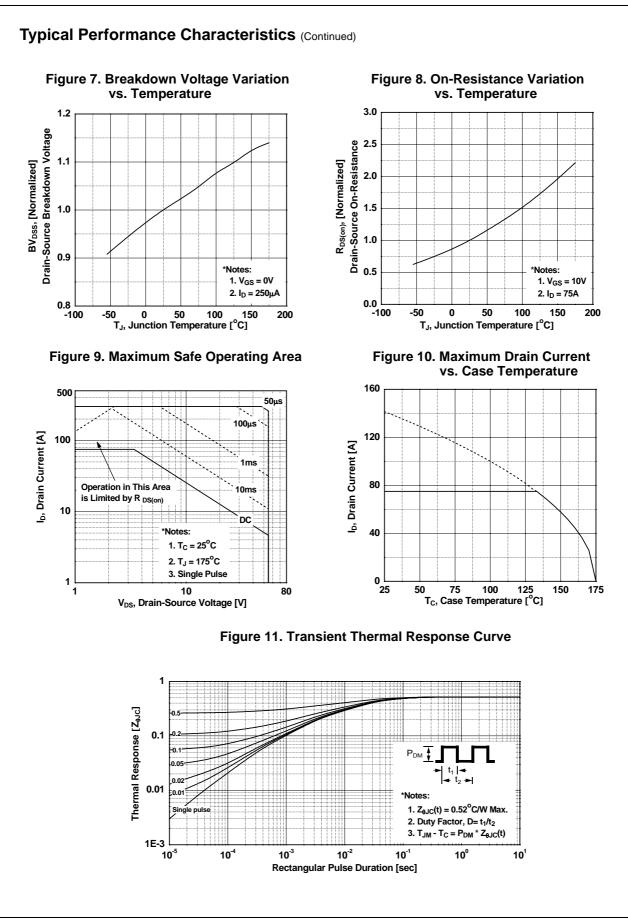
ns

ns

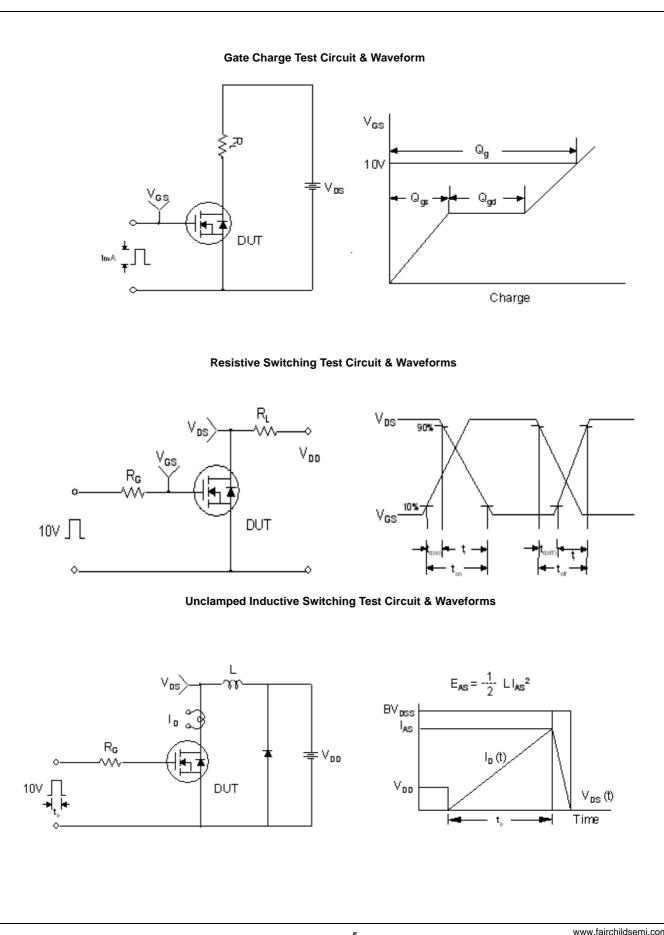

ns

ns

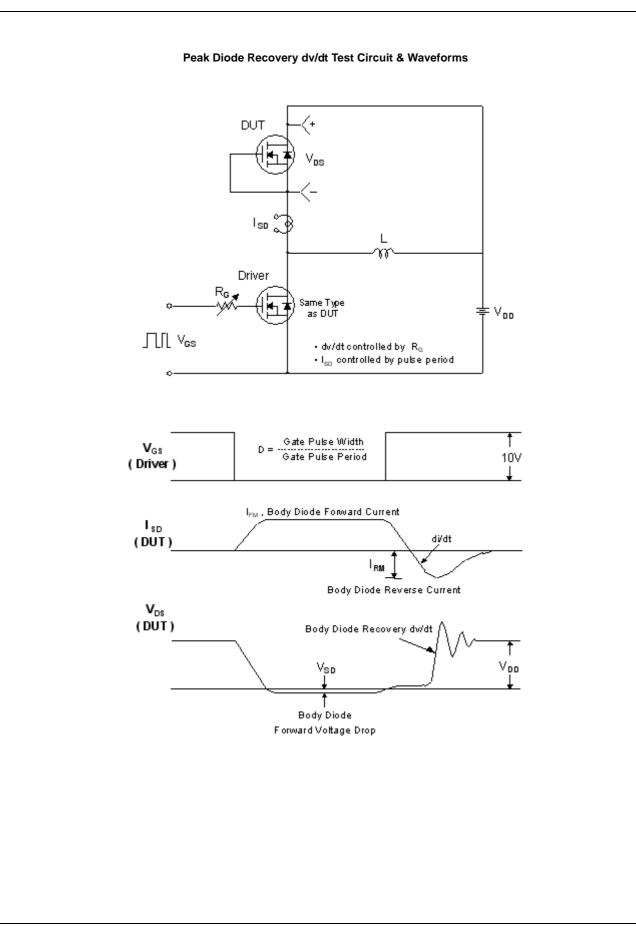
ns

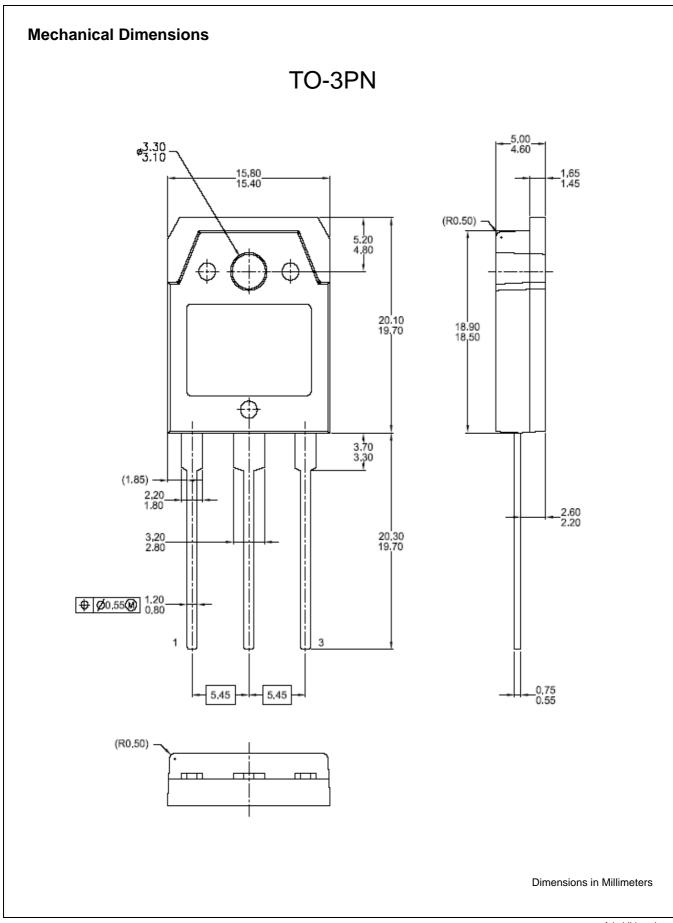

6

1.5



www.fairchildsemi.com


100



www.fairchildsemi.com

HUF75344A3 N-Channel UltraFET Power MOSFET

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now [™] CorePLUS [™] <i>CROSSVOLT</i> [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FPS [™] FRFET [®] Global Power Resource SM	Green FPS [™] Groen FPS [™] e-Series [™] GTO [™] <i>i-Lo</i> [™] IntelliMAX [™] ISOPLANAR [™] MegaBuck [™] MICROCOUPLER [™] MicroFET [™] MicroFET [™] MitroPak [™] MillerDrive [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®] U [®] PDP-SPM [™] Power220 [®]	Power247 [®] POWEREDGE [®] Power-SPM TM PowerTrench [®] Programmable Active Droop TM QFET [®] QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM SMART START TM SPM [®] STEALTH TM SuperFET TM SuperSOT TM -3 SuperSOT TM -6	SuperSOT [™] -8 SyncFET [™] The Power Franchise [®] P franchise TinyBoost [™] TinyBoost [™] TinyBoost [™] TinyLogic [®] TINYOPTO [™] TinyPOwer [™] TinyPOwer [™] TinyWire [™] µSerDes [™] UHC [®] UniFET [™] VCX [™]
---	---	--	--

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Termo

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.		